|
Then the researchers teased out just what made the chemical reaction, named sumoylation, so toxic. It seems that cells may try to deal with the mutated protein by clumping it out of the way, almost like creating a garbage heap. Adding Rhes led to less clumping along with cell death, suggesting that it's the soluble form of the faulty protein that's dangerous.
And that's the connection to other brain-destroying diseases like Alzheimer's. Most are distinguished by clumps of some type of faulty protein, and there's a raging debate among scientists about whether the clumps, also called "aggregates," are the cause of brain destruction or a frantic attempt by the brain to save itself.
"The answers in one disease may have implications for another," noted Koroshetz of NIH's National Institute of Neurological Disorders and Stroke. "There's been people on both sides of the fence. This story plays to the role of the aggregates as not being the major problem but the soluble protein as being the major problem."
Dr. Nancy Wexler of the Hereditary Disease Foundation, who helped lead the Huntington's gene discovery, called the work a "fabulous experiment" and praised the Hopkins team for quickly publishing the Rhes reaction so that other researchers could start hunting ways to block it.
"This is a very promising avenue," she said.
One next step is to see whether removing Rhes from mice with Huntington's disease slows or prevents the brain cell death without causing too many side effects. If so, the quest would be for a drug to block that protein.
[Associated
Press;
Copyright 2009 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.
News | Sports | Business | Rural Review | Teaching & Learning | Home and Family | Tourism | Obituaries
Community |
Perspectives
|
Law & Courts |
Leisure Time
|
Spiritual Life |
Health & Fitness |
Teen Scene
Calendar
|
Letters to the Editor