|
In the intense pressure and cold of the deep, methane hydrates exist in a slushy, crystalline form. But as methane rockets upward in a blowout, passing into lower-pressure zones, it converts to a gaseous state and gains tremendous force. The use of heat in cementing, or sealing a well, which was under way prior to the blast, can destabilize methane hydrates at extreme depths. Halliburton Co., which was doing the cementing of the Deepwater Horizon well, acknowledged as much in an industry presentation last year, calling the risks "a challenge to the safety and economics." Ultra deepwater rigs like Horizon are also required to have more robust blowout preventers that can withstand the intense pressure. The rig's preventer was designed to withstand 15,000 pounds of pressure per square inch, a standard for drilling at these depths. At an oil industry conference in Houston last week, there was an advanced 20,000-pound model on display. Investigators trying to pinpoint a cause of the explosion are looking at both the blowout preventer and Halliburton's cementing. Interviews with rig workers conducted as part of BP's internal investigation indicate a bubble of methane escaped from the well and rocketed up the drill column, expanding as it approached the surface. Transocean Ltd., which owned the rig and leased it to BP, is the major player in deepwater drilling, which 40 rigs worldwide working 5,000 feet down or greater. It said in a statement that the company's first commitment is safety. "The company continues to strive and apply its core safety tools consistently across all its operations around the world," Transocean said. The ongoing struggle to cap the leak also underscores the challenges when things go wrong far below the surface. BP's initial attempt to cap the underwater gusher with a 100-ton house-sized box designed to funnel the oil to a tanker ship was scrapped due to the formation of an icy slush that clogged it. Company officials are now focused on positioning a smaller containment vessel, known as a Top Hat, or plugging a portion of the leak with junk. Those methods are long shots, however, never tried at such depths, and it could be up to three months before a relief well shuts off the leak entirely. "Think of this same thing happening at less water depth: We could have easily sealed that well," said Satish Nagarajaiah, a Rice University engineering professor who focuses on offshore structures. "Now the challenges are bigger." As oil companies continue to push the boundaries into new frontiers, they encounter unknowns: different sands, different hydrocarbons, different gas pressures. There's less of a history that can be used to assess problems that drilling may encounter. "There's a real change when you go from conventional deepwater to much greater depths," said Tyler Priest, a University of Houston professor and expert on the history of offshore petroleum. "There are unknowns."
[Associated
Press;
Copyright 2010 The Associated Press. All rights reserved. This
material may not be published, broadcast, rewritten or
redistributed.
News | Sports | Business | Rural Review | Teaching & Learning | Home and Family | Tourism | Obituaries
Community |
Perspectives
|
Law & Courts |
Leisure Time
|
Spiritual Life |
Health & Fitness |
Teen Scene
Calendar
|
Letters to the Editor