sponsored by

In Britain, A Battle To Spin Great Science Into Gold

Send a link to a friend  Share

[April 30, 2014]  By Ben Hirschler and Kate Kelland

MANCHESTER / CAMBRIDGE England (Reuters)  It's mega strong, ultra light and super stretchy, and if things work out, a wonder material discovered in Britain could change many aspects of human existence  starting with peoples' sex lives.

Safer and sensually superior condoms may not have been the first thing on the minds of the Nobel-winning team at the University of Manchester that isolated graphene a decade ago, but they may be an early eye-catching use of the new one-atom-thick material.

Billed as potentially the most important discovery of this century, graphene  the thinnest material on earth and 200 times stronger than steel  is also exciting researchers around the world exploring its use in everything from electronics to nanotech drug delivery.

For British science, among the biggest questions is whether graphene's home nation can spin its breakthrough into real monetary gain, or whether  as a Thomson Reuters patent analysis suggests  global big hitters will nip in and grab the market.

The question could not be more timely, as a potential $100 billion bid by U.S. drugs giant Pfizer for its smaller British rival AstraZeneca threatens to upend another long-standing area of British scientific expertise  pharmaceuticals.

A new government-backed $100 million National Graphene Institute opens next year in Manchester aimed at putting Britain at the heart of a much hoped-for graphene revolution.


Its business director James Baker has a vision for Manchester to become "graphene city"  a Silicon Valley-style hub that will become the place to be for everyone and anyone working in the wonder stuff.

"If you get this right, the ecosystem of graphene city could inspire a whole industry, with start-ups clustering around the supply chain and knowledge base," he said in an interview.

"Manchester is not unique in terms of graphene research, but if we start to create this cluster, it could become unique."

Yet a Thomson Reuters analysis of worldwide patent filings shows graphene's birthplace is already falling behind, with China and the United States leading the pack when it comes to finding ways to exploit this previously unknown form of carbon.

The organization with the most patent filings is South Korean consumer electronics giant Samsung Electronics, eyeing graphene's potential in flexible touchscreen displays and other areas.

The story shows the problems facing a mid-sized economy like Britain, with a limited industrial base, striving to monetize its science in an increasingly globalized world.

Britain's $2.5 trillion economy may still retain a leading position in certain high-tech fields like aerospace and pharmaceuticals but the competition is intense and cross-border corporate deals can change the landscape overnight.

Pfizer's plans to swallow AstraZeneca have sent shockwaves through the life sciences sector, which with GlaxoSmithKline at its helm has been a rare success story for the British manufacturing industry.

For a graphic on graphene patents:

Hawaii Restaurant Association Executive Director Roger Morey told Reuters that restaurants would have to absorb rising costs in Hawaii's tourism-dependent economy, though the slower phase-in would help businesses prepare.

Melanie Lee, a former drug industry research head who now leads the Think10 consultancy, said the damaging R&D cutbacks from such a deal would be a "nail in the coffin" for a sector that is vital for nurturing young biotechnology firms.

The vulnerability of even an established industry like pharmaceuticals highlights the challenges facing Baker's dreamed-of graphene city.

"I'm confident because I'm a 'glass half full' person, but it's not an easy sell," he told Reuters. "We need some big British companies to be prepared to back the vision with some serious engagement, resources and funding."

Britain has been here before. Forty years ago, two researchers at the Laboratory of Molecular Biology in Cambridge, England, discovered a way to produce highly specific antibodies  the foot soldiers of the immune system  in a test tube.

Cesar Milstein and Georges Koehler thought their process might one day have a commercial application, but the government department backing them did not seek a patent when their work on monoclonal antibodies was published in 1975.

Today, the world is awash with monoclonal antibody patents and six of the 10 top-selling medicines in the world are made from them  but none are sold by British firms.

[to top of second column]

British scientists also did much of the work that led to liquid crystal displays, used in flat-screen computers and televisions, as well as studying the potential of carbon fiber. In these cases, too, it was foreign companies that profited.

And with penicillin, one of the greatest medical discoveries of the last century  by Alexander Fleming in Britain in 1928  it was scientists working for Pfizer who developed a deep-tank fermentation method that enabled mass production of the drug for use in World War Two.

"Time after time, Britain has led the way in scientific research only to see the commercial benefits accrue overseas," finance minister George Osborne told a gathering of scientists in Cambridge last week.

"For decades we have done too little to turn British ingenuity into commercial success."


Like a modern-day alchemist, seeking to turn basic science into commercial gold, he is convinced things can be made to work better in future, given guaranteed state science funding and fresh incentives for entrepreneurs and venture capital.

And independent experts believe things are improving, with more universities now actively promoting technology start-ups and science hubs emerging around world-class academic centers in London, Oxford, Cambridge and Manchester.

"The culture here used to be that universities produced pure knowledge and then simply threw it out of the window for the rest of world to do whatever it liked with," said Erkko Autio, professor of technology venturing and entrepreneurship at Imperial College London Business School.

"The UK is improving but to be successful in translating scientific advances into businesses you need to have a compatible industrial base and over the past few decades we have seen the erosion of that manufacturing base.

Certainly, the country has a scientific record to be proud of, with three of the world's top universities in Oxford, Cambridge and Imperial College London, as well as a run rate of at least one Nobel prize a year since 2009.

Yet the country files fewer patents each year than the United States, Japan, Germany, France, China and South Korea, and even in its chosen field of graphene it comes in seventh place.

In the labs at the University of Manchester, Aravind Vijayaraghavan, who leads graphene research here, says his team is bent on making the kind of fundamental breakthroughs that will convince big British business to back the wonder material.

Graphene could be used for everything from flexible foldable mobile phones and tablet computers, to ultra-light aircraft wings, to life-saving water filtration systems, to targeted cancer therapies.

When it comes to the condom, he explains, the market would be relatively small, but it could be a great showcase for some of graphene's best qualities.

The idea is that the next-generation contraceptive would be made from a composite material "tailored to enhance the natural sensation during intercourse", he said, combining the strength of graphene with the elasticity of latex.

"We want to produce a new material which can be thinner, stronger, more stretchy, safer and  perhaps most importantly  more pleasurable."

(Editing by Anna Willard)

[ 2014 Thomson Reuters. All rights reserved.]

Copyright 2014 Reuters. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

< Top Stories index

Back to top