|
Next Harvard engineers pitched in with a special scaffolding. The team "seeded" the scaffolding with these ventricle stem cells, and a thin strip of mouse heart muscle grew right in the laboratory.
Not only that, it spontaneously beat, the team reported in Science and at a National Institutes of Health meeting this week on the state of cardiac regeneration.
"This looks like the kind of work a normal heart tissue strip would do," said Chien, director of Mass General's Cardiovascular Research Center. "We went from embryonic stem cells to an organ."
What next? This was not a fully developed piece of heart muscle but a thin strip. To be usable, it would have to be thicker, more three-dimensional, for more beating strength. It also needs a nourishing blood supply. So a next big challenge is pinpointing which daughter to those master heart stem cells will grow blood vessels.
The NIH's Nabel said the experiment also offers a possible new opportunity for cell therapy -- that perhaps injecting the precise muscle-generating cell directly into a damaged heart would have a better chance of sticking and working.
The Harvard team wants both methods tried.
"We're not saying this is going to happen tomorrow," said Chien, who also is working on repeating the work with human cells. "I believe within five years," it might be ready to try with people.
[Associated
Press;
Copyright 2009 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.
News | Sports | Business | Rural Review | Teaching & Learning | Home and Family | Tourism | Obituaries
Community |
Perspectives
|
Law & Courts |
Leisure Time
|
Spiritual Life |
Health & Fitness |
Teen Scene
Calendar
|
Letters to the Editor