|
Ocean upwelling is a phenomenon on the West Coast triggered by north winds that cause waters from the bottom to rise to the top, bringing with them nutrients that feed the whole food web. Those deep ocean waters have always been more acidic than surface waters. When rising carbon dioxide levels in surface water combined with the deep ocean water, it pushed conditions past the point where oyster larvae could survive, the study found. Oyster larvae start to form their shells from a form of calcium carbonate called aragonite, said Chris Langdon, a professor of fisheries at Oregon State University who runs the shellfish broodstock program at Hatfield Marine Science Center and took part in the study. Once they stop swimming and attach themselves to a rock or oyster shell, they switch to a tougher form known as calcite that is less vulnerable to acid levels. But by then it is too late. "It looks like to us that they are the most sensitive in the first 48 hours," said Hales. "If we can just get them over that hump, then they are a lot less sensitive to subsequent variations." It appears that larvae just don't have the energy to properly form their shells under higher acid conditions, Langdon said. Hales said the good news is that if hatcheries can manage their water supply to reduce the acidity, either by changing the times they take water from the ocean, or by adding neutralizing chemicals, they will have better larvae survival. However, oysters reproducing in the wild will have a harder time.
[Associated
Press;
Copyright 2012 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.
News | Sports | Business | Rural Review | Teaching & Learning | Home and Family | Tourism | Obituaries
Community |
Perspectives
|
Law & Courts |
Leisure Time
|
Spiritual Life |
Health & Fitness |
Teen Scene
Calendar
|
Letters to the Editor