Prosthetic innovation: 'It's like you have a hand again' - study
Send a link to a friend
[March 05, 2020]
By Linda Carroll
NEW YORK (Reuters) - Today's artificial
limbs can look very natural, and now an innovative process makes
prosthetic hands move more naturally as well.
In an innovative experiment, scientists have shown that the nerves in
patients' arms can be trained to control the movements of prosthetic
fingers and thumbs.
"This is the biggest advance in motor control for people with
amputations in many years," said Paul Cederna, a professor of plastic
surgery and biomedical engineering at the University of Michigan.
A challenge to powering prosthetics has been the minute signals put out
by an amputee's nerves. Cederna's team boosted the signal by wrapping
tiny bits of muscle around nerve endings, according to their study
published in Science Translational Medicine.
As the nerves grow into the muscle, the person's thoughts can create a
muscle twitch that produces a signal big enough to be picked up by tiny
wires connected to a nearby computer, which tells the prosthetic hand to
move.
"Our ultimate goal is to have prosthetic limbs that the person views as
a part of their body," Cederna said.
In an example of how well the system works, a woman who was nervously
tapping her own fingers prompted the prosthetic to tap right along with
it, Cederna said. "It was just doing what the other hand was doing, like
it was a part of her," he noted.
"This worked the very first time we tried it. There's no learning for
the participants. All of the learning happens in our algorithms. That's
different from other approaches."
[to top of second column]
|
Paul Cederna (foreground), the Robert Oneal Professor of Plastic
Surgery at the University of Michigan, shifts his attention as
Daniel Lyons, a resident of plastic surgery, stitches up the arm of
Karen Sussex, a participant in the U-M RPNI study, after implanting
clinical bipolar electrodes that enable intuitive mind control of an
advanced prosthetic handin Ann Arbor, Michigan, October 24, 2018.
Evan Dougherty/University of Michigan Engineering via REUTERS
The procedure also worked for another amputee in the study who had
lost not only his hand, but also part of his arm.
"It's the coolest part of what they've shown," said Lee Fisher, an
assistant professor in the University of Pittsburgh's department of
physical medicine and rehabilitation and bioengineering.
Participants were able to pick up blocks with a pincer grasp, move
their thumb in a continuous motion, lift spherical objects, and even
play in a version of Rock, Paper, Scissors, according to the study.
The approach is an "exciting innovation," but no one can predict
when it will be marketable, said David Putrino, co-director of the
abilities research center at Mount Sinai Hospital in New York.
"Currently it takes 17 years to get something (from the lab) out
into clinical practice," he said.
(Reporting by Linda Carroll; Editing by Richard Chang)
[© 2020 Thomson Reuters. All rights
reserved.] Copyright 2020 Reuters. All rights reserved. This material may not be published,
broadcast, rewritten or redistributed.
Thompson Reuters is solely responsible for this content. |