Surprised astronomers find new type of star explosion - a micronova
Send a link to a friend
[April 21, 2022]
By Will Dunham
WASHINGTON (Reuters) - Astronomers have
detected a previously unknown type of stellar explosion called a
micronova involving thermonuclear blasts at the polar regions of a type
of burned-out star called a white dwarf after it has siphoned material
from a companion star.
The researchers said on Wednesday a micronova is by far the least
powerful type of star explosions now known - less energetic than a blast
called a nova in which a white dwarf's entire surface blows up and tiny
compared to a supernova that occurs during the death throes of some
giant stars.
Micronovae are observed from Earth as bursts of light lasting about 10
hours. They were documented on three white dwarfs - one 1,680 light
years away from Earth, one 3,720 light years away and one 4,900 light
years away. A light year is the distance light travels in a year, 5.9
trillion miles (9.5 trillion km).
"The discovery was an unexpected surprise. It goes to show just how
dynamic the universe is. These events are fast and sporadic. Finding
them requires looking at the right place at the right time," said
astronomer Simone Scaringi of Durham University in England, lead author
of the study published in the journal Nature.
White dwarfs, among the densest objects in the universe, result from the
collapse of a dying star's core. They have the mass of our sun but are
about the size of Earth in diameter. Most stars, including the sun, are
destined to end their existence in this form.
Some white dwarfs are part of what is called a binary system, in an
orbit with another star.
Micronovae happen in very specific binary systems - with a white dwarf
star possessing a strong magnetic field and a low-mass normal star. The
white dwarf's gravitational pull can strip hydrogen gas from the
companion star's surface. The hydrogen then flows toward the white
dwarf's magnetic poles, similar to how Earth's magnetic field channels
the solar wind to our planet's magnetic poles, causing the auroras.
At the base of accumulating columns of gas at the white dwarf's poles,
pressure and temperature rise, causing thermonuclear fusion that
converts hydrogen into helium.
"Under the conditions in which this is triggered, this fusion is
explosive, and the micronova occurs: a thermonuclear 'bomb' goes off,"
said astronomer and study co-author Paul Groot, who divides his time
between Radboud University in the Netherlands and the University of Cape
Town and South African Astronomical Observatory.
[to top of second column]
|
This artist’s impression shows a two-star system, with a white dwarf
(in the foreground) and a companion star (in the background), where
stellar explosions called micronovae may occur. The white dwarf
steals materials from its companion, which is funnelled towards its
poles. As the material falls on the hot surface of the white dwarf,
it triggers a micronova explosion, contained at one of the star’s
poles. Mark Garlick/European Southern Observatory/Handout via
REUTERS
The explosion is localized and does
not destroy the white dwarf. In fact, the micronova cycle can repeat
itself.
"Only a very small percentage of the white dwarf participates in
this explosion, roughly about one millionth of the surface area.
Translated to the Earth this would be an area of about, say, the
city of London," Groot added.
Each micronova event burns through material the equivalent of one
large asteroid, or just over one millionth of Earth's mass, Scaringi
said.
A micronova is similar to a nova, a thermonuclear explosion
engulfing a white dwarf's entire surface. With novae, the white
dwarf lacks a strong magnetic field, meaning that hydrogen stolen
from the companion star is distributed globally rather than
concentrating at the poles. Novae can last for weeks or months,
burning through about a million times more mass than micronovae,
Scaringi said.
The researchers discovered the micronovae when analyzing data from
NASA's TESS space telescope. They used the European Southern
Observatory's Chile-based Very Large Telescope to confirm the
explosions involved white dwarfs.
Some other types of stellar explosions include: a kilonova, when two
neutron stars or a neutron star and a black hole merge; a hypernova,
a kind of supernova involving a massive star exploding at end of its
life cycle and collapsing to form a black hole; and a luminous red
nova involving two stars merging.
(Reporting by Will Dunham; Editing by Lisa Shumaker)
[© 2022 Thomson Reuters. All rights
reserved.] This material may not be published,
broadcast, rewritten or redistributed.
Thompson Reuters is solely responsible for this content.
|