Gigacasting 2.0: Tesla reinvents carmaking with quiet breakthrough
Send a link to a friend
[September 14, 2023] By
Norihiko Shirouzu
AUSTIN, Texas (Reuters) - Tesla has combined a series of innovations to
make a technological breakthrough that could transform the way it makes
electric vehicles and help Elon Musk achieve his aim of halving
production costs, five people familiar with the move said.
The company pioneered the use of huge presses with 6,000 to 9,000 tons
of clamping pressure to mold the front and rear structures of its Model
Y in a "gigacasting" process that slashed production costs and left
rivals scrambling to catch up.
In a bid to extend its lead, Tesla is closing in on an innovation that
would allow it to die cast nearly all the complex underbody of an EV in
one piece, rather than about 400 parts in a conventional car, the people
said.
The know-how is core to Tesla's "unboxed" manufacturing strategy
unveiled by Chief Executive Musk in March, a linchpin of his plan to
churn out tens of millions of cheaper EVs in the coming decade, and
still make a profit, the sources said.
While Tesla has said its unboxed model involves producing large
sub-assemblies of a car at the same time and then snapping them
together, the size and make-up of the modular blocks is still the
subject of speculation.
Terry Woychowski, president of U.S. engineering company Caresoft Global,
said if Tesla managed to gigacast most of the underbody of an EV, it
would further disrupt the way cars are designed and manufactured.
"It is an enabler on steroids. It has a huge implication for the
industry, but it's a very challenging task," said Woychowski, who worked
for U.S. automaker GM for more than three decades. "Castings are very
hard to do, especially the bigger and the more complicated."
Two of the sources said Tesla's previously unreported new design and
manufacturing techniques meant the company could develop a car from the
ground up in 18 to 24 months, while most rivals can currently take
anywhere from three to four years.
The five people said a single large frame - combining the front and rear
sections with the middle underbody where the battery is housed - could
be used in Tesla's small EV which it aims to launch with a price tag of
$25,000 by the middle of the decade.
Tesla was expected to make a decision on whether to die cast the
platform in one piece as soon as this month, three of the sources said,
though even if they do press ahead the end product could change during
the design validation process.
Neither Tesla nor Musk responded to questions from Reuters for this
story.
3D PRINTING AND SAND
The breakthrough Tesla has made centers on the how the giant molds for
such a large part are designed and tested for mass production, and how
casts can incorporate hollow subframes with internal ribs to cut weight
and boost crashworthiness.
In both cases the innovations, developed by design and casting
specialists in Britain, Germany, Japan and the United States, involve 3D
printing and industrial sand, the five people said. All spoke to Reuters
on condition of anonymity because they are not authorized to speak to
the media.
So far, automakers have shied away from casting ever-bigger structures
because of the "gigacast dilemma": creating molds to make parts of 1.5
meters squared or more boosts efficiency but is expensive and comes with
myriad risks.
Once a large metal test mold has been made, machining tweaks during the
design process could cost $100,000 a go, or redoing the mold altogether
might come to $1.5 million, according to one casting specialist. Another
said the whole design process for a large metal mold would typically
cost about $4 million.
That has been deemed prohibitive by automakers - especially as a design
might need half a dozen tweaks or more to achieve a perfect die from the
perspective of noise and vibration, fit and finish, ergonomics and
crashworthiness, the sources said.
[to top of second column] |
A part of a press machine is pictured at the IDRA group plant in
Travagliato, Italy, January 25, 2023. REUTERS/Alessandro Garofalo/File
Photo
But Musk's vision from the start was to find a way to cast the
underbody in one piece, despite the risks, the sources said.
To overcome the obstacles, Tesla turned to firms that make test
molds out of industrial sand with 3D printers. Using a digital
design file, printers known as binder jets deposit a liquid binding
agent onto a thin layer of sand and gradually build a mold, layer by
layer, that can die cast molten alloys.
According to one source, the cost of the design validation process
with sand casting, even with multiple versions, is minimal - just 3%
of doing the same with a metal prototype.
That means Tesla can tweak prototypes as many times as needed,
reprinting a new one in a matter of hours using machines from
companies such as Desktop Metal and its unit ExOne.
The design validation cycle using sand casting only takes to two to
three months, two of the sources said, compared with anywhere from
six months to a year for metal mold prototypes.
TAILOR-MADE ALLOYS
The subframes in a car underbody are typically hollow to save weight
and improve crashworthiness. At the moment, they are made by
stamping and welding multiple parts together leaving a void in the
middle.
To cast subframes with hollows as part of one gigacasting, Tesla
plans to place solid sand cores printed by the binder jets within
the overall mold. Once the part has been cast, the sand is removed
to leave the voids.
But despite that greater flexibility achieved in both the design
process and the complexity of the large frames, there was still one
more major hurdle to clear.
The aluminum alloys used to produce the castings behaved differently
in sand and metal molds and often failed to meet Tesla's criteria
for crashworthiness and other attributes.
The casting specialists overcame that by formulating special alloys,
fine-tuning the molten alloy cooling process, and also coming up
with an after-production heat treatment, three of the sources said.
And once Tesla is happy with the prototype mold, it can then invest
in a final metal one for mass production.
The sources said Tesla's upcoming small car has given it a perfect
opportunity to cast an EV platform in one piece, mainly because its
underbody is simpler,
The kind of small cars Tesla is developing – one for personal use
and the other a robotaxi – don't have a big "overhang" at the front
and the back, as there is not much of a hood or rear trunk.
"It's like a boat in a way, a battery tray with small wings attached
to both ends. That would make sense to do in one piece," one person
said.
The sources said, however, that Tesla still had to make a call on
what kind of gigapress to use if it decides to cast the underbody in
one piece - and that choice would also dictate how complex the car
frame would be.
To punch out such large body parts fast, the people said Tesla would
need new bigger gigapresses with massive clamping power of 16,000
tons or more, which would come with a hefty price tag and might need
larger factory buildings.
Three of the five sources said one problem with presses using high
clamping power, however, was that they cannot house the 3D printed
sand cores needed to make hollow subframes.
The people said Tesla could solve these obstacles by using a
different type of press into which molten alloy can be injected
slowly - a method that tends to produce higher quality castings and
can accommodate the sand cores.
But the process takes longer.
"Tesla could still choose high-pressure for productivity, or they
could choose slow alloy injection for quality and versatility," one
of the people said. "It's still a coin toss at this point."
(Editing by David Clarke)
[© 2023 Thomson Reuters. All rights
reserved.]
This material may not be published,
broadcast, rewritten or redistributed.
Thompson Reuters is solely responsible for this content. |